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Abstract

This paper studies how an optimal menu chosen by a social planner

depends on whether agents receive imperfect signals about their true

tastes (imperfect self-knowledge) or the properties of available alternatives

(imperfect information). Under imperfect self-knowledge, it is not optimal to

offer fewer alternatives than the number of different tastes present in the

population, unless noise is infinite (agents have no clue about their true

preferences). As noise increases, the social planner offers menu items that

are closer together (more similar). However, under imperfect information, as

noise increases, it could be optimal to construct a menu with more distinct

alternatives, restricting the number of options, or, for some finite noise, offer

a single item.
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1 Introduction

In real life, we often face choices from discrete menus; for example, when choosing

an insurance plan, a school for our children, or a pension fund. When confronted

with these important decisions, we often make mistakes for two potential reasons.

First, we may misperceive the true properties of alternatives, i.e., we have imperfect

information. Second, we can misperceive our own tastes, i.e., we have imperfect

self-knowledge. To illustrate the difference between these two situations, consider

two people. The first individual wants to buy a used minivan and cannot distinguish

between a high-quality car and a “lemon” and, therefore, he has imperfect

information about the properties of alternatives. The second person wants to buy

his first new car from the dealership, which discloses truthful information about

cars’ condition and properties, but he lacks life experience about what kind of car

he would enjoy the most, and, hence, he has an imperfect self-knowledge about his

own taste.

There exist many well-documented possible mechanisms that explain imperfect

information and imperfect self-knowledge. Imperfect information could be related

to ignorance or uncertainty. For example, individuals can be uninformed and

underestimate potential cost savings from changing prescription drug plans (Kling

et al., 2012), not be fully informed about crucial aspects of an insurance plan

(Handel and Kolstad, 2015), and, when choosing a car, may think of fuel costs

as scaling linearly in miles per gallon instead of gallons per mile (Allcott, 2013).

Imperfect self-knowledge can be due to the fact that people vary in their ability

to retrieve or memorize relevant information about themselves, engage more or less

in reflecting on who they are, or that some individuals simply lack experience in a

particular choice situation. For example, when choosing a gym contract, individuals

overestimate their attendance and their likelihood of cancelling automatically

renewed memberships (DellaVigna and Malmendier, 2006). In general, we are

myopic in decision-making, can lack skill predicting our own tastes and risk

preferences, and can be led to erroneous choices thought by fallible memory and
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incorrect evaluation of past experiences (Kahneman, 1994; Heckman et al., 2021)1.

In the examples above, a government or other social planner can regulate the size

of the menu from which consumers choose and the properties of alternatives within it.

The social planner cannot possibly know the individual tastes of a particular agent

and, hence, is not able to provide the best alternative for each agent. However,

knowing characteristics of the overall population, including probabilities of mistakes

and distribution of tastes, he can construct a menu of alternatives, referred to as an

optimal menu, that maximizes the sum of the expected utilities of agents.

I analyze an optimal menu under the assumptions that agents misperceive either

the true properties of available alternatives or their own tastes. Due to either of these

two types of misperception, an agent could make a mistake, i.e., choose an alternative

with a property that is not the best match for her taste. In two extreme cases, when

the misperception is insignificant or agents choose an alternative randomly, the

optimal menus are identical under both types of misperception. For the intermediate

degrees of rationality, the dependence of the optimal choice set on the precision of

choice is complex. I use a binary model and numerical calculations to obtain a

solution for this intermediate case.

The results are the following. When agents misperceive the available options, it is

optimal to limit choices when the probability of making mistakes is moderately high.

Further, it could be optimal to construct a menu with more distinct alternatives. In

contrast, when agents misperceive their own tastes, it is optimal to limit choice only

when agents choose randomly, and to propose alternatives that are more similar

when there is a greater probability of a mistake.

The intuition behind the results is that, when agents misperceive the properties

of alternatives, every additional alternative in the menu has the benefit of providing

more choice (matching the agents’ taste more precisely) at the cost of increasing

the probability and magnitude of mistakes. Thus, the more similar the alternatives

are, the more difficult it is for the agent to differentiate between them. Therefore,

1See also Falk et al. (2021) who study how accounting for differences in self-knowledge could
significantly increase the explanatory power of regression models.
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it could be optimal to construct a menu with more distinct alternatives to decrease

the probability of a mistake. When the probability of a mistake is large, it becomes

optimal to remove options that induce a large utility loss, and for some finitely large

probability of a mistake, it is optimal to leave one option that matches the mean

taste of the population.

In contrast, when agents have imperfect self-knowledge, the misperception of

taste distorts the distance between the true taste and the properties of the options

in the same way for all options. Thus, the probability of a mistake depends only on

the midpoints between the properties of two closest alternatives. It would not be

decreased if alternatives were differentiated as long as the midpoint between their

properties is the same. Moreover, while the particular optimal property of a new

additional alternative would depend on the distributions of tastes and mistakes, the

social planner can always add an item with a property that matches an existing

alternative, and it will not decrease the utility of the agents. Therefore, adding a

new alternative to the menu is weakly beneficial for the social planner.

The discussion about individuals misperceiving the true properties of alternatives

and accordingly failing to choose the best one goes back at least as far as Luce

(1959), who analyzes agent choice subject to random noise. Mirrlees (1987, 2017)

and Sheshinski (2003b,a, 2010, 2016) study the welfare maximization problem when

agents misperceive the true properties of alternatives. They show that, while the

choice should not be limited when the agents are completely rational, the optimum

choice-set is a singleton when the probability of a mistake is relatively high. In

contrast, this paper focuses on comparing optimal menu allocations in two situations:

when the agent misperceives either the true properties of alternatives or her own

taste. Thus, if agents misperceive the true properties of alternatives, the optimal

menu differs significantly from the one when agents misperceive their own tastes.

This study highlights the importance of taking into account not only the demand

for a particular alternative, but also the probability and source of mistakes when

designing a menu set.

In addition, this paper proposes a new explanatory insight into the choice
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paradox (Schwartz, 2004), i.e., the effect when a larger choice set sometimes

decreases the satisfaction of individuals and ultimately can lead to the rejection

of an offer. This phenomenon has been observed, for example, when consumers

purchased jam and chocolate (Iyengar and Lepper, 2001) and when they made more

important decisions such as a choice of 401k pension plans (Iyengar et al., 2004), or

decided on participation in an election (Nagler, 2015)2. Several studies suggest that

the existence of the choice paradox and the efficiency of corresponding interventions,

such as categorization of goods, depend on whether consumers are familiar with

products or not (Chernev, 2003; Mogilner et al., 2008). There are numerous models

that attempt to explain this evidence (Irons and Hepburn, 2007; Sarver, 2008;

Ortoleva, 2013; Kuksov and Villas-Boas, 2010). While my study does not focus on a

particular mechanism, it suggests that the existence of this phenomenon and relevant

interventions depend on the source of mistakes in the decision making process. Thus,

when agents misperceive the true properties of alternatives, we can observe choice

overload, and limiting the menu size could be a welfare maximizing intervention.

However, when agents have imperfect self-knowledge, we would not observe the

choice overload and, hence, should not limit the choice.

The rest of the paper is organized as follows. The next section presents the model

setup. Section 3 discusses a simple model with two agents to illustrate the intuition

behind the results, and then provides numerical simulations with populations of

agents. The last section concludes.

2 Model

A population of M ≥ 2 agents chooses from a set of N ≥ 2 alternatives. The utility

of the agent i ∈ {1, ...,M} from the alternative j ∈ {1, ..., N} is U j
i = −(ti − vj)2,

where ti ∈ R is the taste (bliss point) of i and vj ∈ R is the property of j. T ≥ 2 is

the number of unique tastes in the population. The agent misperceives parameters

2Further discussion on empirical evidence when choice opportunities can harm consumer can
be found, for example, in Scheibehenne et al. (2010) or Chernev et al. (2015).
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of the model. I describe two versions of the model:

– with misperceived true properties of alternatives: for any alternative j,

the agent i observes a signal ϑji = vj + eji , where vj is a true property of the option,

and noise eji is a random variable drawn from the distribution with mean zero and

variance σji . She chooses the alternative with the signal that is a closest match to

her taste3, i.e., solves the following problem:

max
j∈{1,...,N}

−(ti − ϑji )2.

– with misperceived own true taste: the agent i observes a signal τi = ti+ei,

where ti is the true taste of the agent, and noise ei is a random variable drawn from

the distribution with mean zero and variance σi. She chooses the alternative with

the property that is a closest match to the signal of her taste, i.e., solves the following

problem:

max
j∈{1,...,N}

−(τi − vj)2.

In both versions of the model, if there are several alternatives that solve

the agent’s problem, then the agent chooses randomly between them with equal

probabilities.

The social planner maximizes overall welfare by choosing a number and

properties of available alternatives, i.e., the optimal menu:

max
N,vj∀j∈{1,...,N}

M∑
i=1

N∑
j=1

P j
i U

j
i ,

where P j
i is the probability that the agent i chooses option j. I assume that

N ≤ T : the maximum number of options that the social planner could propose is

equal to the number of tastes in the population.4

The problem has the following time-line:

3For discussion on when this behavior is optimal for the agent, see Weibull et al. (2007).
4I make this assumption because the welfare function is not monotone in the number of options:

for example, if for a given distribution, the optimal number of alternatives is 4, then the solution
to the welfare maximization problem automatically includes any number that is divisible by 4.
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1. The social planner observes (i) distributions of mistakes, and (ii) what the

tastes in the population are, and (iii) the number of agents with each taste.

2. He chooses the optimal menu.

3. Agents observe signals.

4. They choose an alternative from the menu.

3 Solution

The solution to the welfare maximization problem depends on the size of the noise.

Regardless of the source of mistakes, when there is no noise, the social planner

creates a menu with alternatives that match tastes perfectly; when noise is infinite,

it is optimal to limit choices and provide only one alternative that matches the mean

taste in the population. This result is formalized in Propositions 1 and 2.

Proposition 1. If σji = 0 or σi = 0 ∀(i, j), then N = T , vj = ti.

Proof. Since Ui ≤ 0 ∀i ⇒ max(
∑M

i=1

∑N
j=1 P

j
i U

j
i ) = 0 which is obtained when

N = T , vj = ti.

Proposition 2. If σji = +∞ or σi = +∞ ∀(i, j)5, then N = 1 and vj =
∑
ti

M
.

Proof. If σji = +∞ or σi = +∞, then all alternatives are a priori the same for agents

and by the assumption P j
i = 1

N
. Therefore, the solution to the welfare maximization

problem is N = 1 and vj =
∑
ti

M
.

In the next subsection, I illustrate the solution to the model for the intermediate

cases using a model with uniformly distributed noise and two agents. Then, I

show that the results obtained are valid for the larger population of agents with a

continuous distribution of noise using numerical simulations.

5Here I abuse notation and denote the situation when k → +∞ as σj
i = +∞ and σi = +∞

∀(i, j), where k = 1, 2, ... is the sequence of models, which are equivalent in all respects except x,
and limk→+∞ xk = +∞, where x is either σj

i or σi.
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3.1 Two agents

There are two agents, i ∈ {1, 2}, with tastes symmetrically allocated around zero,

t1 = −t2 < 0.6 The social planner could propose at most two options, j ∈ {1, 2}. I

assume that v1 ≤ v2. The situation when v1 = v2 is identical to the situation when

the social planner proposes only one alternative and limits the agents’ choice.

I assume that the noise is uniformly distributed, eji and ei ∼ U(−b,+b).

Therefore, the social planner expects that agent 1 chooses the first option with

probability P 1
1 and the second option with probability P 2

1 . Agent 2 chooses similarly.

In the case of misperceived true properties of alternatives, the probabilities are

as follows:

P 2
1 = min

(
1,max

(
0, 0.5 ∗ (

v1 − v2 + 2b)

2b
)2
))
, (1)

P 1
1 = 1− P 2

1 ,

P 1
2 = min

(
1,max

(
0, 0.5 ∗ (

v1 − v2 + 2b)

2b
)2
))
, (2)

P 2
2 = 1− P 1

2 .

In the case of misperceived true own tastes, the probabilities are as follows:

P 2
1 = min

(
1,max

(
0,
t1 + b− v1+v2

2

2b

))
, (3)

P 1
1 = 1− P 2

1 ,

P 1
2 = min

(
1,max

(
0,

v1+v2

2
− (t2 − b)
2b

))
, (4)

P 2
2 = 1− P 1

2 .

The solution to the welfare maximization problem is formalized in Propositions

3 and 4.

Proposition 3. In the case of misperceived true values of alternatives, the welfare

maximization problem has the following solution:

6It is without loss of generality, because, for any two distinct tastes one always can re-scale
tastes to be symmetrically allocated around zero.
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– small noise (b ≤ |ti|): v1 = −v2 = t1;

– medium noise (|ti| < b < 4|ti|): v1 = −v2 = −b2−4bt1
3t1

;

– large noise (b ≥ 4|ti|): v1 = v2 = 0.

Proof. See Appendix A.

Proposition 4. In the case of misperceived true own tastes, the welfare

maximization problem has the following solution:

– small noise (b ≤ |ti|): v1 = −v2 = t1;

– medium and large noise (b > |ti|): v1 = −v2 = − t21
b
.

Proof. See Appendix B.

Accordingly, when the noise is small (b ≤ |ti|), in both cases the social planner

proposes options that match the tastes of the agents perfectly, and they choose the

option closest to their true taste with certainty. When the noise is significantly large

(b > |ti|), then the solution depends on the source of mistakes. If agents misperceive

the true properties of alternatives, it is optimal to limit the choice when the noise

is finitely large. However, when agents misperceive their tastes, it is optimal to

propose two alternatives with different properties for any finite noise.

In addition, if agents misperceive the true properties of alternatives, there exists

noise (|ti| < b < 2|ti|) when the difference in the properties of proposed alternatives

increases in the noise, i.e., the property of the first item decreases (∂v
1

∂b
< 0) and

the property of the second item increases (∂v
2

∂b
> 0) with the noise. However, if

agents misperceive their tastes, the social planner always proposes alternatives that

are more similar as the noise becomes greater. Figure 1 illustrates these results for

given parameters.

3.1.1 Intuition

The results are driven by the fact that if a taste is unclear, the distance between

the true taste and the properties of the options is distorted in the same way for all

options, while if the properties of the options are unclear, this distortion is different
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Medium noise Large noise

Imperfect information
-1

t1

1

t2

−4
3
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4
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-1
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1
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0 1
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-1

t1

1

t2

−1
2
1

v1
1
2

v2

-1

t1

1

t2

−1
4
1

v1
1
4

v2

Figure 1: Optimal properties of alternatives when agents has imperfect information
(on the top) or imperfect self-knowledge (on the bottom) for different noises (b = 2
on the left and b = 4 on the right) and t1 = −1.

for any option. Consider the probability that the agent makes the wrong choice

(i.e., she chooses the alternative that is not the closest to her true taste): Equations

(1)-(2) in the case of misperceived true properties of alternatives, and Equations

(3)-(4) in the case of misperceived true own tastes.

When the noise originates from the misperception of alternatives, the probability

of a mistake does not depend on the individual taste and is equal for both agents.

Therefore, placing options close to each other increases the probability that agents

make the wrong choice, which is a nonlinear function of v1 and v2. Thus, there is

an inverted U-shaped curvilinear relationship between the optimal property of the

alternative and the size of the noise, as depicted in Figure 2 for optimal v1 = −v2 = v.

When the noise is significant, but still small (|ti| < b < 2|ti|), the social planner

wants to distance the properties of alternatives from each other. In this situation,

the loss from the decrease in utility, if the correct choice is made, is smaller than

the gain from the decrease in the probability of making the wrong choice. However,

when the noise is moderately large (2|ti| ≤ b < 4|ti|), it is not profitable to distance

the properties of alternatives farther apart. The loss from the decrease in utility in

the case of the correct choice outweighs the gain from the decrease in the probability

of the wrong choice. Therefore, the social planner chooses properties of alternatives

closer to each other. When the probability of making the wrong choice is significantly

high (b ≥ 4|ti|), it is optimal to propose alternatives with identical properties.

However, when agents misperceive their tastes, the probability of making a

mistake depends linearly on individual tastes and the midpoint between properties
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of alternatives (v1+v2
2

). Moving the midpoint would decrease the probability of

a mistake for one agent, but equally increase it for another agent. Therefore,

differentiating properties of alternatives can not decrease the overall probability

of making the wrong choice. Given that utilities of the agents are convex in the loss

from the mismatch, there is no incentives for the social planner to propose items

with asymmetrical or more distinct than tastes of agents properties. Accordingly,

the social planner chooses v by equalizing the marginal gain of locating an option

closer to the center for the second agent (reducing the loss in the case of making

the wrong choice) and the marginal loss for the first agent (reducing the gain in the

case of making the correct choice).

1.5 2.0 2.5 3.0 3.5 4.0
b

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

v

Figure 2: Optimal property of the first alternative as a function of b and t1 = −1.

3.2 Many agents

In this section, I solve the model for the larger population of agents with a continuous

distribution of noise using numerical simulations. This example aims to provide

suggestive evidence that the results described in the previous section are not driven

by the binary model setup and could be observed in a more complex setting too.
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3.2.1 Setup

There is a single-peaked population of agents with a variety of tastes T = 7.

When agents misperceive the true properties of alternatives, eji is assumed to be

identically and independently Gumbel distributed. The Gumbel distribution has

fatter tails than a Normal distribution; however, the difference between them is

often indistinguishable empirically (Train, 2002). At the same time, the difference

between Gumbel distributed variables, which is used to calculate the probabilities

of an agent’s choices, follows the Logistic distribution. This significantly simplifies

the numerical simulation. Therefore, the probability that agent i chooses option j

is:

P j
i =

exp(U j
i /λ)∑N

i exp(U j
i /λ)

.

When agents misperceive their own true tastes, ei is assumed to be identically

and independently Logistic distributed.7 In this case, the probability that agent i

chooses option j is:

P j
i =

∫ vj+vj+1

2

vj−1+vj

2

exp( ti−v
j

0.5λ
)

0.5λ(1 + exp( ti−v
j

0.5λ
))2
dvj.

In both situations, higher values of λ correspond to larger variance and, hence,

to a greater probability of making a mistake. I solve for every possible menu size

and then select the one that maximizes welfare.8

3.2.2 Results

The solution with the optimal number of alternatives and optimal menu allocation

is presented in Figures 3-6 for different λ. The grey bars (histogram) correspond to

the number of agents with a particular taste. The optimal properties of alternatives

are defined by vertical lines. The optimal number of options is stated above the

7In this case, I do not use the Gumbel distribution, since it is asymmetric. The asymmetry
property skews the optimal menu, complicating the visual comparison. However, the qualitative
results of the welfare analysis with the Gumbel distribution are identical to the analysis with the
Logistic distribution.

8Calculations are performed in R using the “optimx” package.
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graphs. In some situations, there are fewer vertical lines than the optimal number

of alternatives, because there are several identical options that match the same

taste. Intuitively, additional options with repeated values increase the probability

that agents will choose a particular alternative. Thus, when one taste is more

salient in the population, it is beneficial to highlight the alternative that matches

this taste.9,10

Figure 3 shows that, when the noise is small, it is optimal to provide alternatives

that match tastes perfectly under both kinds of mistakes.

Figure 3: Optimal menu allocation when agents misperceive the true properties of
alternatives or their own tastes, and λ = 0.1. The red lines indicate the optimal
properties of alternatives. The histogram shows the distribution of agents.

Figures 4 and 5 show the optimal menus for the situation when the noise is

significantly large. When agents misperceive the true properties of alternatives, it is

optimal to limit the choice (Figures 4). When the probabilities of making mistakes

increase, the social planner decreases the menu size. When agents misperceive their

9Mirrlees (2017) refers to such manipulation as “advertising”. One possible type of
“advertising” is nudges. For example, it was shown that setting an option as a default increases
the probability that this alternative will be chosen. See Thaler and Sunstein (2008) for additional
discussion on the topic.

10One way to avoid the presence of identical options in the menu is to introduce the following

probability function: P j
i =

m(j)P j
i∫

m(y)Py
i dy

, where m(j) is a density of alternatives with identical

properties (Mirrlees, 2017). This formula relates to the modified multinomial logit model by
Matějka and McKay (2015). Accordingly, another possible explanation for the “advertising” effect
is prior knowledge of agents about options in a menu.
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own taste, it is not optimal to limit their choice (Figures 5). Thus, the social planner

proposes 7 alternatives with unique properties for any noise. When the probabilities

of making mistakes increase, he allocates alternatives closer to each other and to the

mean taste in the population.

Figure 4: Optimal menu allocation when agents misperceive the true properties of
alternatives for different noise (λ = 1 on the left and λ = 2 on the right graph). The
red lines indicate the optimal properties of alternatives. The histogram shows the
distribution of agents.

Figure 5: Optimal menu allocation when agents misperceive their own tastes for
different noise (λ = 1 on the left and λ = 2 on the right graph). The red lines
indicate the optimal properties of alternatives. The histogram shows the distribution
of agents.

It is worth noticing that the effect of the decrease in the inequality of the tastes
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is similar to the decrease in noise. Figure 6 shows the optimal menu allocation

for different populations of agents with the same variety of tastes T = 7, but with

lower density of agents with the most frequent (mode) taste tmode = 0. In this

situation, when agents misperceive the true properties of alternatives (left graph,

Figure 6), the social planner proposes more alternatives to agents, compared to the

optimal menu for a population with higher density of agents with mode taste (left

graph, Figure 4). Similarly, when agents misperceive their own tastes (right graph,

Figure 6), the social planner proposes 7 alternatives, but allocates them further

away from each other and from the mean taste in the population, compared to the

optimal menu for a population with a higher density of agents with mode taste (left

graph, Figure 5).

Figure 6: Optimal menu allocation when agents misperceive the true properties of
alternatives (left graph) or their own tastes (right graph) and λ = 1. The red lines
indicate the optimal properties of alternatives. The histogram shows the distribution
of agents.

4 Conclusion

This study demonstrates the significance of considering the origin of a mistake while

constructing a menu. When agents make decisions blindly, the social planner should

limit the choice and offer only one option to agents, regardless of the source of the
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agents’ mistakes. However, in more realistic situations, in which the decision is

imperfect but not random, if agents misperceive the true properties of alternatives,

the optimal menu could differ dramatically from one where agents misperceive their

own tastes.

The present paper assumes that all agents are identical in their precision and

that the mistakes they make are independent. However, the perceived properties

of alternatives or tastes can be correlated in many real-life decision situations, and

some agents are better than others at distinguishing alternatives and knowing their

own tastes. People might, for instance, consistently misperceive the properties of

alternatives in one particular direction because they are risk-averse or pessimistic.

Individuals with extreme preferences might be experts who are knowledgeable about

both their own tastes and the properties of alternatives, whereas people with more

moderate preferences might find it more difficult to distinguish between options

on the menu and be less aware of their own preferences. In addition, this paper is

agnostic about the mechanisms behind the origin of mistakes. For example, consider

the repeatable choice and assume that the misperception of tastes is caused by a

fallible memory. Then, in contrast to the situation where a choice is made only

once, it may be best to limit the menu, because doing so may reduce the likelihood

of future mistakes. All in all, it would be interesting and insightful to explore further

generalizations for the dimensions mentioned above.
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A Proof of Proposition 3

I denote t1 = t < 0. If b < |t|, then the probability of a mistake equals zero and the

first best allocation is optimal. Therefore, I consider a situation when b ≥ |t| and

0 ≤ P j
i ≤ 1 ∀i, j. Then, the welfare maximization problem is the following:

max
v1,v2

W (v1, v2) =
{

(1− 0.5 ∗ (
v1 − v2 + 2b)

2b
)2) · (−(t− v1)2 − (−t− v2)2)

0.5 ∗ (
v1 − v2 + 2b)

2b
)2 · (−(t− v2)2 − (−t− v1)2)

}
.

The derivative with respect to v1 is:

t(−1.5(v1)2 − 4bv1 + 3v1v2 − 1.5(v2)2 + 4bv2)− 2b2v1

b2
= 0.

The derivative with respect to v2 is:

t(−1.5(v1)2 + 4bv1 − 3v1v2 + 1.5(v2)2 − 4bv2)− 2b2v1

b2
= 0.

This system of equations has two solutions:

v1 = v2 = 0;

v1 = −v2 =
−b2 − 4bt

3t
.

Since v1 ≤ 0, the second solution exists only for b ≤ 4|t|. Moreover, when

b = 4|t|, then v = 0 and the two solutions coincide. In this situation the welfare

is W (b = 4|t|) = −2t2. At the same time, if one substitutes v1 = −b2−4bt
3t

into the

maximization problem, then W (b = |t|) = 0 and W > −2t2 for any |t| < b < 4|t|.

Therefore, for b < 4|t| the welfare is maximized when v1 = −v2 = −b2−4bt
3t

; for b ≥ 4t

it is optimal to provide the menu with two identical alternatives v1 = v2 = 0.
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B Proof of Proposition 4

If the b < |t|, then the probability of a mistake equals zero and the first best

allocation is optimal. Therefore, I consider a situation when b ≥ |t| and 0 ≤ P j
i ≤

1 ∀i, j. Then the welfare maximization problem is the following:

max
v1,v2

W (v1, v2) =
{t+ b− v1+v2

2

2b
· −(t− v2)2 + (1−

t+ b− v1+v2

2

2b
) · −(t− v1)2

v1+v2

2
− (−t− b)

2b
· −(−t− v1)2 + (1−

v1+v2

2
− (−t− b)

2b
) · −(−t− v2)2

}
.

The derivative with respect to v1 is:

−4t2 + 4bv1 + 3v21 + 2v1v2 − v22
2b

= 0.

The derivative with respect to v2 is:

4t2 − v21 − 4bv2 + 2v1v2 + 3v22
2b

= 0.

This system of equations has three solutions:

v1 = v2 = −t
2

b
; (5)

v1 = 1/2(−b−
√

2
√
b2 − 2t2, v2 = 1/2(b−

√
2
√
b2 − 2t2); (6)

v1 = 1/2(−b+
√

2
√
b2 − 2t2, v2 = 1/2(b+

√
2
√
b2 − 2t2). (7)

Solutions (6) and (7) exist only for b2 > 2t2. Then, given b2 > 2t2, by using the

second derivative test, for both of these solutions:

∂2W

∂v21

∂2W

∂v22
− ∂2W

∂v1∂v2
= 4− 8t2

b2
< 0.
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Therefore, solutions (6) and (7) are not a maximum. Since b ≥ |t|, for the

solution (5):
∂2W

∂v21
=
∂2W

∂v22
= −2 +

2t2

b2
< 0.

Therefore, the welfare is maximized when v1 = −v2 = − t2

b
.
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